21st Annual GIS/CAMA Technologies Conference Chattanooga Convention Center

GIS/CAMA • Chattanooga, Th

IN COLUMN 2 IS NOT

THE OWNER OF THE OWNER OWNER

March 6-9, 2017

IAAO

Continuing Education (CE) Credit

Recertification Credit forms for CE credit can be collected from the Registration Desk on <u>Thursday</u>.

Housekeeping

The conference proceedings will be available approximately 8 weeks after the conference.

Integrating Predictive Model Markup Language into a CAMA System

Experiences from the

Maricopa County Assessor's Office

David Whiterell, RES whiterelld@mail.maricopa.gov

Jennifer Rearich rearichj001@mail.maricopa.gov

Overview

- Starting Line
 - Existing Processes
 - Background Information
- The Goal
 - Model Deployment using PMML
- From Concept to Actuality
 - Decision Process
 - Sowing Teamwork for Innovation
- Envisioning the Future
 - Alternative Models and PMML
- Code Examples

About Maricopa County

- 4.1 million residents (July 2015)
- 9,200 square miles
- 106.1°F avg summer temp
- 300 days of sunshine
- 1.58 million parcels
- \$450 billion total FCV (2016)
- 260 Assessor's Office staff
 - 8 modelers
- Two Annual Assessment Rolls
 - Notice of Value (NOV)
 - Notice of Change (NOC)

- Mid-1990s
 - Mass appraisal modeling program established
 - Explosive growth demanded new efficient processes for property valuations
- Statistical Package for the Social Sciences (SPSS)
- 71 annual multiple regression analysis (MRA) models produced in 2016

Current Model Types	
Residential	Condominium
Residential Land	Commercial Land
Apartment Income & Market	Industrial Market
Office Income & Market	

- Calculators
 - SPSS models replicated in Microsoft Excel
 - Allows appraisers to interact with models to update property values

PARCELID: 999-99-999A							2. 0	24 7		
	0.4				٦		7		ata (5
	Compo	nents No	eighborhood:	4005	MCF	R: 3525			I Con	
		Dara	ol Land Sizes	7					COT	NT
		Parc	er Land Size:		500	•				N
		10	tai Land Size:		500					
Components			Percent Compl	ete	100%	Non-Livabl	e	Saft	Qual	Year
Building Class		3 Average	Bath Fixtures		3	Unfinished E	Basement			
Patio Covd		2	Patio UnCovd		0	Storage				
Exterior Walls		Brick	Roofing		Asphalt	Workshop				
Air Conditioning		Evap/cooling	Heating		Yes	Hangar				
Areas: Main L	iving Are	a	Construction	n Year		Barn				
1st Floor :		840	Uriginal		1950	Pole Barn				
Znd Floor :		U	Weighted	1 - 0 t	1950	Sport Court				
Srd Floor:		U	KD Imps Buil	t in Cost	20	Tennis Court	t			
DSMITT (FIN):	••••••	0	Dhusiasl Car		50	P001				
Parcel Main:	11-33	1040	Physical Con	Not	Indifier	Darking		Catt	Vaar	
Attached Additi	Unit):	1040	Attached Add	- NO I	vioditier	Parking		Sqn	rear	
Attached Addit	Vear	Soft	Attached Additions 2nd FI & Above:		Retached Ga	arage				
Quai	Ical	oqu	2 Comparable	2015	- Sqit	Award and Ca	arage			
Detached Liveh	le Aree:	•	2 comparable	12013	200	Millacheu Ca	apon			
Oual	Vear	Soft				Att Golf Cart	arpon			
addi	1 Gui	oqu				Det Cell Cert				
Economic Unit	Data			Flight Zone	<u></u>	An DV				
Economic Unit:	No	Lead	No	None	100%	Det BV				
Parcel Count	0			Moderate	0%	Att Porte Co	chere			
Lead ParcellD	_			Substantial	0%	Det Porte Co	ohere			
Location		Mountains	No	Flood Plain		Utility Data		Access	Data	
Arterial	No	Non-contig land	No	None	100%	None	No	Land-Loo	cked	No
Corner	No	Pad Site	No	Flood Way	0%	Electric	No	No Road		No
Cul-De-Sac	No	Premium View	No	Flood Frng	0%	Water	No	Unpaved		No
EPA Site	No	Preserve	No	Flood Plain	0%	Well Water	No	Paved		No
Freeway Acc	No	Rail Road	No	Zoning:		Nat Gas	No	Air Park		No
Freeway Crnr	No	Adj To Apt	No	City		Sewer	No	GIS/CAN	A Variables	
Gated	No	Adj To Cm/Ind	No	Zones	%	Septic	No	Weighted	d Elevation	1130
Golf	No	Restricted Area	No	R-7	100%			<u></u>		
Greenbelt	No	Trans Line	No							
Lake	No	Waterway	No							
Maj Intersection	NO	Uther Neg Infl	NO		1			83 		
		Y	ear 2017 La	and Value	\$					
		Year	2017 Eull C	ash Value	\$					
		1001 1			- Ψ					

The Goal

- Integrate MRA models within CAMA System
 - Instant revaluation based on an assigned model
 - Creates more efficient appraisal workflow

Model Deployment

- Data Science terminology
- Application of an existing model to new data
- Many different model deployment methods available

IAAO Standard on AVMs

"An AVM must be tested to ensure that it meets required accuracy standards before being <u>deployed</u>." (Section 2.3.6)

"The process of developing and <u>deploying</u> an automated valuation model must include safeguards to insure [sic] the accuracy of data used and the integrity of results produced."

(Section 8)

PMML Background

- Predictive Model Markup Language
- XML-based language
- Developed by Data Mining Group (DMG)
- Open standard for representing and sharing predictive models between different applications
- Version 0.7 developed in 1997; now on 4.3

PMML and Model Deployment

 Many industries (healthcare, insurance, banking, government) develop predictive models to determine credit risk, targeted audiences, fraud detection, quality control, etc

- Considered numerous deployment methods
- Focused on three options:
 - Iron Python (Python integrated with .NET framework)
 - Custom vendor built program
 - PMML

• Key questions:

- Could the option successfully calculate within a CAMA System?
- What impact would the option have on existing modeling processes?
- How much time would it take to annually convert 70+ models from SPSS Syntax to PMML?
- Could conversion be automated?
- How quickly could values be calculated (both batch [anticipating upwards of 2 million parcels in the near future] and single)?
- Was the option flexible in form and language (i.e., adaptive to non-regression model types or other statistical programs)?
 - Did the option present any potential database security issues?

• PMML selected

- Suitable for multiple types of predictive models
- Compatible with numerous statistical programs
- Portable for different operating systems and uses
- Batch calculations surpassed speed expectations
 - Calculated 250,000 values in less than 2 minutes

- Challenges of existing SPSS/PMML tools
 - SPSS Syntax allows certain types of unconventional coding
 - Overwriting original variables
 - SQFT = SQFT FINISHED_BASEMENT <-bad for PMML</pre>
 - SQFTM = SQFT FINISHED_BASEMENT <-good for PMML
 - SPSS Version 22 supports PMML 4.1
 - PMML 4.2 is preferable
 - Modeling processes could be adjusted to accommodate, but would require significant time and effort
 - Amount of work required to utilize existing SPSS to PMML conversion tools limited attraction

- Positives of switching to R
 - Free, open source program for statistical computing
 - Supports PMML- conversion packages already exist
 - Increasingly taught in higher education
- Challenges of switching to R
 - Maintenance of SPSS-based legacy models
 - Modelers still need to complete some manual manipulation for PMML
 - Unless custom R package developed to support transformations and customizations required

- Existing options presented problems
 - Modeling process dictated by statutorily-defined calendar
 - Not enough time to manually code PMML
 - Increasing staff size unlikely
- Envisioned ideal SPSS to PMML process
 - Long-term, stable, and easy to use solution
 - Modelers should remain modelers
 - Minimal time requirements for model deployment
 - Write PMML in parallel with modeling activities

PMML Methodology Decisions

- Custom PMML Code Generator
 - Recognizes existing modeling processes
 - Eliminates teaching modelers how to manually manipulate
 PMML code
 - Reduces errors
 - Allows modelers to focus on modeling
- Verification Program
 - Ensures PMML calculated values = SPSS modeled values

PMML Methodology Decisions

- High-level understanding of database
- Supported model types
- Transformation mathematics
- Eight slightly different modeling styles
- Tests to ensure accuracy
 - Adheres to schema
 - Produces expected values

Learning the Fundamentals

- Limited PMML resources
- PMML Class from UC San Diego Extension Program
 - Predictive Models with PMML
 - Conclusions:
 - Modelers are not computer programmers
 - Achieving end goal with PMML was going to be difficult

Learning the Fundamentals

- Basic programming training for modelers
- University of Michigan + Coursera MOOC
 - Series of online Python Courses
 - Collectively applied knowledge to familiar scenario
- Established foundational programming skills necessary to read code and troubleshoot

Transforming Processes

Innovation has nothing to do with how many R&D dollars you have. When Apple came up with the Mac, IBM was spending at least 100 times more on R&D. It's not about money. It's about the people you have, how you're led, and how much you get it.

- Steve Jobs, Fortune, November 9, 1998

Sowing Teamwork for Innovation

- Workload assignment
 - PMML Project added to overall workload
 - Each modeler took on additional work
- Change and challenges
 - This wasn't easy
 - Many roadblocks along the way
 - Lots of discussion and spirited debate
- The Point

Keep focused on the goal and future benefits

Envisioning the Future

Envisioning the Future

Envisioning the Future

- There are all types of predictive model types supported by PMML
 - Deploying PMML-based predictive models for other mass appraisal uses
 - Comparable Sales
 - Data Collection- Effective Age scenarios
 - Data Integrity- Sales Verification
 - Decision Processes- Routing permits or appeals

Example of a Recode Statement

SPSS Syntax:		R Code:		
recode nbhd (15006=1) (else=0) into nbhd15006.		data\$nbhd15006 <- ifelse(data\$nbhd== 15006,1,0) *where data is the name of the data frame		
	PMML Code: <derivedfield datatype="double" nam<br=""><apply function="if"></apply></derivedfield>	e="nbhd15006" optype="continuous">		

<Apply function="equal">

<FieldRef field="nbhd"/>

<Constant dataType="double">15006</Constant>

</Apply>

- <Constant dataType="double">1</Constant>
- <Constant dataType="double">0</Constant>

</Apply>

</DerivedField>

Example of a Compute Statement for a Continuous Variable

SPSS Syntax:	R Code:
compute sqftm = sqft – finished_basement.	data\$sqftm <- data\$sqft – data\$finished_basement
	*where data is the name of the data frame

PMML Code:

<DerivedField dataType="double" name="sqftm" optype="continuous">

<Apply function="-">

<FieldRef field="sqft"/>

<FieldRef field="finished_basement"/>

</Apply>

</DerivedField>

Example of a Compute/If Statement for a Binary Variable

SPSS Syntax:		R Code:		
compute lake $n4 = 0$.		data\$lake n4 <- ifelse(data\$nbhd==10004 & data\$lake==1, 1,0)		
if (nbhd eq 10004 and lake eq 1) lake_n4 = 1.		*where data is the name of the data frame		
	PMML Code:			
	<pre><derivedfield ;<="" datatype="double" name="lake_n4" optype="continuous" pre=""></derivedfield></pre>			
	<apply function="if"></apply>			
	<apply function="and"></apply>			
	<apply function="equal"></apply>			
	<fieldref field="nbhd"></fieldref>			
	<constant datatype="double">10004</constant>			
	<apply function="equal"></apply>			
	<fieldref field="lake"></fieldref>			
	<constant datatype="double">1</constant>			
CIC/CAMA - Chattanoogo TN	<constant datatype="double">1</constant>			
	<constant datatype="double">0</constant>			
IAAO UKSA-				
March 6-9, 2017 21st Annual GIS/CAMA Technologies Conference • March 6–9, 2017 • Chattanooga, Tennessee				

Key Points

- Model Deployment is now achievable
 - Mass appraisal models and CAMA Systems can now be integrated
 - Improved work processes benefit both modelers and appraisers
 - PMML makes models portable
- New potential uses for predictive models in mass appraisal environment

Questions?

Look for us:

- In Fair & Equitable
- At the 2017 IAAO Annual Conference in Las Vegas

Acknowledgments: The Honorable Paul Petersen, Maricopa County Assessor Tim Boncoskey, Chief Deputy Assessor Eric Bails, Chief Technology Officer Uwe Hohoff, Chief Modeler Doug Pack, Modeler + Lead Programmer Lance Hull, Brad Patton, John Mulvihill, Tyson Dziob, Modelers

References

Guazzelli, A., K. Stathatos, and M. Zeller. 2009. Efficient Deployment of Predictive Analytics through Open Standards and Cloud Computing. *SIGKDD Explorations* 11(1) 32-38. http://www.kdd.org/exploration_files/p5V11n1.pdf (accessed Oct. 21, 2016).

Guazzelli, A., M. Zeller, W. Lin, and G. Williams. 2009. PMML: An Open Standard for Sharing Models. *The R Journal* 1(1) 60-65. https://journal.r-project.org/archive/2009-1/RJournal_2009-1_Guazzelli+et+al.pdf (accessed Oct. 21, 2016).

Guazzelli, A., W. Lin, and T. Jena. 2012. *PMML in Action: Unleashing the Power of Open Standards for Data Mining and Predictive Analytics*, 2nd ed. CreateSpace Independent Publishing.

IAAO. 2003. Standard on Automated Valuation Models (AVMs). Kansas City, MO: International Association of Assessing Officers.

Jena, T., A. Guazzelli, W. Lin, and M. Zeller. 2013. The R pmmlTransformations Package. Proceedings of the KDD 2013 PMML Workshop, August 2013, Chicago, IL. https://kdd13pmml.files.wordpress.com/2013/07/jena_et_al. pdf (accessed Oct. 21, 2016). Pechter, R. 2009. What's PMML and What's New in PMML 4.0?. *SIGKDD Explorations* 11(1) 19-25. http://www.kdd.org/exploration_files/p3V11n1.pdf (accessed Oct. 21, 2016).

Severance, C. University of Michigan. *Python for Everybody Specialization* [Coursera MOOC]. https://www.coursera.org/specializations/python (accessed Jan. 5, 2017).

University of California, San Diego Extension. *Predictive Models with PMML* [CSE-41184]. http://extension.ucsd.edu/studyarea/index.cfm?vAction=singl eCourse&vCourse=CSE-41184 (accessed Jan. 5, 2017).

U.S. Census Bureau. 2015. State & County Quickfacts: Maricopa County, AZ. http://www.census.gov/quickfacts/table/PST045215/04013 (accessed Jan. 17, 2017).

Wherli, J. 2016. *Predictive Model Markup Language (PMML): Unifying CAMA, AVM, GIS, & 3rd party analytics*. Proceedings of the 20th Annual GIS/CAMA Technologies Conference, Feb. 2016, Savannah, GA.

Whiterell, D. 2011. *Visualizing Assessment Data using low Cost Solutions*. Proceedings of the 2011 IAAO International Conference on Assessment Administration, Sep. 2011, Phoenix, AZ.

GIS-Pro 2017

October 23-26, 2017 Jacksonville, Florida

the state of the s

ALL DE LES

milite

ETER

Assessment Leadership Beyond All Limits **LASS VEGASS** ANNUAL CONFERENCE Sptember 24-27

September 24-27