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Government of Ontario

Establishes the province's

assessment and taxation

laws and determines the
education tax rates.

Determines property
classifications and assessments
for all properties in Ontario, in
accordance with legislation set by
the Ontario Government.
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Municipalities
Determine revenue
requirements, set municipal
tax rates and collect
property taxes to pay for
municipal services.*

Property owners

Pay property taxes that
fund community services
and education taxes that

fund public schools.
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Mur"ClpaI Responsible for
assessing more than

PrO perty 5.6 million properties in , ik
T Serving all of Ontario's

Assessment o - Weare 444 municipalities



Presenter Notes
Presentation Notes
A little about MPAC’s role and mandate. 

Our role at MPAC is to assess and classify all 5.6 million properties in Ontario, with a combined assessed value of more than 3 trillion. We do this in compliance with the legislative and regulatory framework set by the Government of Ontario. 

Data is an integral part of our business. 
 
At MPAC, we manage an expansive property database – our real-time property values, attributes, and reports are used by municipalities, property owners, governments, banks, lenders, insurers, and the real estate industry.

As part of our legislative mandate, MPAC delivers an assessment roll annually to municipalities and the Province of Ontario to support the calculation of property and education taxes
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Presenter Notes
Presentation Notes
For the past 50 years machine learning has been used in property assessment.
Supervised learning, the training data provided is in a labelled format (sale amounts).
The algorithm attempts to understand the relationship between dependent and independent variables using historical data.
Examples of this range from linear regression, polynomial, decision tree, and neural networks.
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Formula:
value = total area * 625 +
age *-1600


Presenter Notes
Presentation Notes
Easy to understand and explain. Limited to accuracy

http://stats.stackexchange.com/questions/253337/what-is-the-difference-between-regular-linear-regression-and-deep-learning-lin
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.reneshbedre.com/blog/linear-regression.html
https://creativecommons.org/licenses/by/3.0/
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Neural Network
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Presenter Notes
Presentation Notes
Non-linearity: Capable of capturing complex relationships inherent in data.
Feature Interactions: Can learn intricate feature interactions.
Model Complexity: Ability to handle highly complex patterns for superior predictive performance.
Scalability: Effective handling of large volumes of high-dimensional data.


https://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/
https://creativecommons.org/licenses/by-nc/3.0/
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Presenter Notes
Presentation Notes
Interpretability focuses on understanding the inner workings of the models, while explainability focuses on explaining the decisions made.
In other words, Explainability expresses "why" an ML model reached a particular decision or prediction.

A model is globally interpretable if it's small and simple enough for a human to understand it, like a simple linear regression. This is not the case for a complex model like gradian boosting or deep neural nets.
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Global Explanations Local Explanations

Providing an overall
explanation of the model's
behavior

Understanding individual,
property - level predictions
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Presenter Notes
Presentation Notes
SHAP is a unified framework that can be used to explain the prediction of our ML model.

What SHAP does is quantify the contribution that each feature brings to the prediction with the help of Shapley Values.
What is Shapley Values? A prediction can be explained by assuming that each feature is a “player” in a game where the prediction is the payout. Shapley values tells us how to fairly distribute the “payout” among the features.
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Presenter Notes
Presentation Notes
SHAP is a unified framework that can be used to explain the prediction of our ML model.

What SHAP does is quantify the contribution that each feature brings to the prediction. How? With the help of Shapley Values
What is Shapley Values? A prediction can be explained by assuming that each feature is a “player” in a game where the prediction is the payout. Shapley values tells us how to fairly distribute the “payout” among the features.


@ sification: Public

effage
area_tot
area2

areal

garatta
eff_ltsf
bsmtarea
quality
garattsp
baths
qual_grps_qual_avg
efffr

bsmt ht

age

fireplcs
strpcode_301
attgar
long_30
gardeta

storeys

0 5000 10000 15000 20000 25000 30000 35000
mean(|SHAP value|) (average impact on model output magnitude)


Presenter Notes
Presentation Notes
To understand a feature’s importance in a model, it is necessary to understand how changing that feature impacts the model’s output
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Presenter Notes
Presentation Notes
In this chart, the x-axis stands for SHAP value, and the y-axis has all the features, in order of importance from top to bottom. Each point on the chart is one SHAP value for a prediction and feature.
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Force Plot

Plotting the features contributing to the model
prediction for a specific instance/property
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Customized Explainability
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This Photo by Unknown Author is licensed
under CC BY-NC


https://www.flickr.com/photos/duncan/8089324138
https://creativecommons.org/licenses/by-nc/3.0/
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Presenter Notes
Presentation Notes
The Shapley value is the average marginal contribution of a feature value across all possible coalitions.
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Property Attribute
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Customized Waterfall Plot

Roll Number: 290603001861122, Homo. Nbhd: B02, Predicted Value: $1051000"

f(x) :1?51000

Lotsize

Age  -4.0%

Bathrooms

Site Attributes

Basement Area

Basement Finish.2%

Split Level-0.8% M |

Other Features -1.2%

0.7M 0.8M 0.9M 1M
Base Value of Typical Property: $696000

1210 sq ft 2693 sq ft 20.2%
6.0 7.5 20.1%
252 sq ft 509 sq ft 9.9%
0.18 acres 0.35 acres 9.2%
37 years 42 years -4.0%
1.5 3.5 3.8%
Cul-de-sac 15%
1071 sq ft 1452 sq ft 15%
503 sq ft 0sqft 129,
0.0 1.0 -0.8%
-1.2%

$696,000 $1,051,000



Presenter Notes
Presentation Notes
Shap values
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Presenter Notes
Presentation Notes
Iterative model predictions
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Presenter Notes
Presentation Notes
Iterative model predictions
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Customized Waterfall Plot
Roll Number: 290604000400200, Homo. Nbhd: B08, Predicted Value: $367000"

I 1334 sqft |[2191 sq ft 16.3%
rea Detached Semi-Det. -14.9%
T 105 years | 166 years -10.6%

- Abuts Com. o
Site Influences : & Tra_ﬁ:ic -4.5 /0
2 | 6.0 5.5 -3.6%
. | Yes No -2.7%
5 | -2.2%
o : 0.04 acres |0.06 acres 1.5%
. | 1.0 15 1.4%
Property Code i Detached Semi-Det. -1.2%
. 300k 350k : 400k 450k _1 '2%

Base Value of Typical Property: $469000 $469,000 $367,000
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Iterative Predictions
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