INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands · December 4 - 5, 2024

ASSESSMENT INNOVATION & Collaboration with a focus on ai

The Effects of Monte Carlo Sampling on Automated Valuation Model Performance in Real Estate Assessment

Luc Hermans, PhD-Candidate

Ulster University NCREA CART

- Uncertainty and risk
- The problem statement
- The Monte Carlo method
- Statistical theory
- Automated Valuation Models
- The research project
- Results
- Further research
- Conclusions

Uncertainty and Risk

INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands · December 4 - 5, 2024

Uncertainty and Risk

Uncertainty is an integral part of any valuation

- Uncertainty increases if a market is non-efficient
- Real estate markets are a prime example of non-efficient markets:
 - Only few properties sell each year compared to the complete stock
 - Transparency is relatively low
 - Transaction data
 - Object data
 - A sale materializes under very specific circumstances
- Uncertainty increases if a real estate market is less mature and more opaque

Uncertainty and Risk

- Normal uncertainty: the uncertainty arising from the methods used, the data used and from the assessment of current and future market conditions. Normal uncertainty is therefore the uncertainty that emerges with the choices made in the valuation process as well as the describable uncertainty of the conditions the valuation has to be made in.
- Abnormal uncertainty: abnormal uncertainty is uncertainty that arises from unusuality, such as extreme market conditions in the event of financial bear or bull markets. However, highly unusual characteristics of a single property also contributes to abnormal uncertainties.
- Risk is described and quantified uncertainty:
 - Verbal communication
 - Risk scoring
 - Statistical quantification

 $\mathbf{\hat{O}}$

IIFI

IAAO

INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands • December 4 - 5, 2024

The problem statement

- Automated valuation modelling
 - Split data in train and hold out set
 - Commonly a 80-20 split
 - Preventing overfitting to ensure consistency in sold and unsold properties
- How big is this problem?

k!(n-k)!

In which n is the population and k is the size of the sample

The problem statement

Total	Number of sales in	Total different configurations of
population	the hold-out set	the hold out set
10	2	45
100	20	5.359833704e ²⁰
1000	200	6.61715556e ²¹⁵

- Clearly not every possible configuration can be checked for model performance
- Concepts from statistics and probability theory can aid to uncover some of this normal uncertainty

INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands • December 4 - 5, 2024

Monte Carlo method

Repeating a probalistic process many times

Comparing the Games Simulate 20 trials of 1000 spins each Exp. return for Fair Roulette = 6.56%Exp. return for European Roulette = -2.26%Exp. return for American Roulette = -8.92%Simulate 20 trials of 10000 spins each Exp. return for Fair Roulette = -1.234%Exp. return for European Roulette = -4.168%Exp. return for American Roulette = -5.752%Simulate 20 trials of 100000 spins each Exp. return for Fair Roulette = 0.8144%Exp. return for European Roulette = -2.6506%Exp. return for American Roulette = -5.113%Simulate 20 trials of 1000000 spins each Exp. return for Fair Roulette = -0.0723%Exp. return for European Roulette = -2.7329%Exp. return for American Roulette = -5.212%MIT open course (Introduction To Computational Thinking And Data Science) (Guttag, 2016)

Statistical concepts

Law of Large Numbers

- the mean of all means from the different Monte Carlo runs will approach the true mean of the population if the number of Monte Carlo runs increases towards infinity
- Central Limit Theorem
 - states that when independent random variables are plotted against their frequency, this frequency distribution approaches a normal distribution

Automated valuation models

- Traditional
 - Regression based (logarithmic transformations are common)
- Artificial intelligence
 - Neural networks
 - Gradient boosting machines
 - Random forrest
 - Etc.
- Spatially aware models
 - GWR
 - SLM
 - Etc.
- Cross breed models

Model performance

- Measured by:
 - Accuracy (Median Ratio)
 - Precision (COD)
 - Consistency (Horizontal & vertical)
- Vertical inequity:
 - **Progressive vertical inequity:** (increasing) homes in the higher market segment bear relatively higher tax burdens. In other words, model-based valuation has resulted in relatively lower ratios in the lower segment while ratios in the higher segment are higher
 - **Regressive vertical inequity**: (declining) homes in the lower market segment bear relatively higher tax burdens. In other words, model-based valuation has resulted in relatively higher ratios in the lower segment while ratios in the higher segment are lower.
- In this study measured by PRD & PRB

The research project

INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands · December 4 - 5, 2024

- Data provided by the Netherlands Council for Real Estate Assessment:
- Municipality of Helmond:
 - Midsize Dutch city (100,000 inhabitants)
 - Highly homogeneous
- The sales data:
 - 5513 usable sales
 - Between January 2017 and December 2021
- With an 80-20 split:
 - 2.918067415e¹¹⁹⁶

The analysis

- 750 runs for each model
- 9-week calculation time for 2 virtual machines
- Three AVMs
 - Traditional (MRA)
 - Gradient boosting machine (GBM)
 - Geographically weighted regression (GWR)
- Collect model performance indicators for MR, COD, PRD & PRB
- Quasi random
 - Samples drawn by assigning integers without the use of a randomizing algorithm

INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands • December 4 - 5, 2024

Monte Carlo

Results – MRA In sample

MRA Train Min Median Max Standard deviation Mean Range Median Ratio 0.0007736111 1.004 1.007 1.007 1.009 0.005 COD 10.84 11.56 0.72 0.09469943 11.24 11.25 PRD 0.0003093028 1.013 1.014 1.014 1.015 0.002 PRB 0.001596 0.002998 0.007762 0.009358 0.001613997 0.002970 PRB Significance 0.48467 0.45843 0.99787 0.2211843 0.05244 0.94543 PRB* (N=X) Х Х Х Χ Х Χ

Median Ratio Bell Curve MRA Train

COD Bell Curve MRA Train

PRD Bell Curve MRA Train

Results – MRA In sample

MRA Train								
	Min	Mean	Median	Max	Range	Standard deviation		
Median Ratio	1.004	1.007	1.007	1.009	0.005	0.0007736111		
COD	10.84	11.24	11.25	11.56	0.72	0.09469943		
PRD	1.013	1.014	1.014	1.015	0.002	0.0003093028		
PRB	0.001596	0.002970	0.002998	0.007762	0.009358	0.001613997		
PRB Significance	0.05244	0.48467	0.45843	0.99787	0.94543	0.2211843		
PRB* (N=X)	Х	Х	Х	Х	Х	Х		

PRB significance Bell Curve MRA Train

Results – MRA Hold out

MRA Test							
	Min	Mean	Median	Max	Range	Standard deviation	
Median Ratio	0.9941	1.0066	1.0065	1.0209	0.0268	0.004562864	
COD	10.32	11.28	11.28	12.34	2.02	0.2900147	
PRD	1.007	1.014	1.014	1.021	0.016	0.002687624	
PRB	-0.032424	0.003909	0.004198	0.029959	0.062383	0.01029577	
PRB Significance	0.0000686	0.3948077	0.3396265	0.9984932	0.9984246	0.301492	
PRB* (N=113)	-0.03242	0.01205	0.01872	0.02996	0.06208	0.01722928	

Median Ratio Bell Curve MRATest

COD Bell Curve MRA Test

PRD Bell Curve MRA Test

Results – MRA Hold out

MRA Test							
	Min	Mean	Median	Max	Range	Standard deviation	
Median Ratio	0.9941	1.0066	1.0065	1.0209	0.0268	0.004562864	
COD	10.32	11.28	11.28	12.34	2.02	0.2900147	
PRD	1.007	1.014	1.014	1.021	0.016	0.002687624	
PRB	-0.032424	0.003909	0.004198	0.029959	0.062383	0.01029577	
PRB Significance	0.0000686	0.3948077	0.3396265	0.9984932	0.9984246	0.301492	
PRB* (N=113)	-0.03242	0.01205	0.01872	0.02996	0.06208	0.01722928	

Monte Carlo

Results – GBM In sample

GBM Train Median Standard deviation Min Mean Max Range Median Ratio 0.9980 0.0006614146 0.9999 0.9999 1.0022 0.0042 COD 6.305 6.478 6.478 6.672 0.367 0.05586565 PRD 1.008 1.008 1.008 0.0001692728 1.007 0.001 PRB -0.01877 0.0007780502 -0.02347 -0.02103 -0.02101 0.0047 PRB Significance 1.807e-18 9.498e-20 1.442e-16 1.442e-16 8.42094e-18 1.000e-23 PRB* (N=X) Х Х Х Х Х Х

COD Bell Curve GBM Train

PRD Bell Curve GBM Train

GBM Train Min Mean Median Max Standard deviation Range Median Ratio 0.9980 0.0006614146 0.9999 0.9999 1.0022 0.0042 COD 6.305 6.478 6.478 6.672 0.367 0.05586565 PRD 1.008 1.008 1.008 0.0001692728 1.007 0.001 PRB -0.01877 0.0007780502 -0.02101 -0.02347 -0.02103 0.0047 PRB Significance 9.498e-20 1.807e-18 1.442e-16 1.442e-16 8.42094e-18 1.000e-23 PRB* (N=X) Х Х Х Х Х Х

PRB significance Bell Curve GBM Train

Results – GBM Hold out

GBM Test							
	Min	Mean	Median	Max	Range	Standard deviation	
Median Ratio	0.9908	1.0001	1.0001	1.0103	0.0195	0.003276783	
COD	7.267	7.831	7.834	8.676	1.409	0.20567	
PRD	1.005	1.010	1.010	1.016	0.011	0.001851493	
PRB	-0.043532	-0.021018	-0.020883	0.001272	0.044804	0.006997613	
PRB Significance	0.0000000	0.0174514	0.0002450	0.8264082	0.8264082	0.06478129	
PRB* (N=690)	-0.04353	-0.02211	-0.02154	-0.01142	0.03211	0.006140605	

COD Bell Curve GBM Test

PRD Bell Curve GBM Test

Results – GBM Hold out

GBM Test							
	Min	Mean	Median	Max	Range	Standard deviation	
Median Ratio	0.9908	1.0001	1.0001	1.0103	0.0195	0.003276783	
COD	7.267	7.831	7.834	8.676	1.409	0.20567	
PRD	1.005	1.010	1.010	1.016	0.011	0.001851493	
PRB	-0.043532	-0.021018	-0.020883	0.001272	0.044804	0.006997613	
PRB Significance	0.0000000	0.0174514	0.0002450	0.8264082	0.8264082	0.06478129	
PRB* (N=690)	-0.04353	-0.02211	-0.02154	-0.01142	0.03211	0.006140605	

PRB Bell Curve GBM Test

PRB significance Bell Curve GBM Test

PRB Bell Curve GBM Test Significant

Monte Carlo

- Not novel, been done before
- Most notably to estimate π
- Also used in Italy before 1940
- More feasible after the advent of computers

Results – GWR In sample

GWR Train Median Standard deviation Min Mean Max Range Median Ratio 1.0017 1.0040 0.0007199143 0.9993 1.0017 0.0047 COD 7.619 8.610 1.367 7.243 0.1752143 7.590 PRD 0.000481204 1.009 1.011 1.010 1.013 0.004 PRB -0.02625 0.05842 0.08467 0.003160465 -0.02094 -0.02109 PRB Significance 1.781e-03 1.781e-03 6.502048e-05 2.374e-06 0.000e+00 0.000e+00 PRB* (N=X)

Median Ratio Bell Curve GWR Train

3-2-1-

7.6

8.0

COD

8.4

COD Bell Curve GWR Train

7.2

PRD Bell Curve GWR Train

Results – GWR In sample

Z-score (PRB>0.05)= 25.1039 P(x<0.0584)≈1

Results – GBM Hold out

GWR Test (Calculation errors removed N=4)								
	Min	Mean	Median	Max	Range	Standard deviation		
Median Ratio	0.9913	1.0020	1.0021	1.0145	0.0232	0.003724557		
COD	8.182	8.943	8.887	14.693	6.511	0.4049825		
PRD	0.9936	1.0104	1.0107	1.0174	0.0238	0.003122602		
PRB	-0.0420971	-0.0081825	-0.0099498	0.0695872	0.1116843	0.01403782		
PRB Significance	0.000000	0.215510	0.067511	0.996947	0.996947	0.2813443		
PRB* (N=347)	-0.04210	-0.01451	-0.01822	0.06959	0.11169	0.01685983		

Median Ratio Bell Curve GWR Test

COD Bell Curve GWR Test

PRD Bell Curve GWR Test

Results – GBM Hold out

Z-score (PRB >0.05) = 4,98819 P(x<0,06959) ≈1

GWR Test (Calculat	ion errors removed	l N=4)				
	Min	Mean	Median	Max	Range	Standard deviation
Median Ratio	0.9913	1.0020	1.0021	1.0145	0.0232	0.003724557
COD	8.182	8.943	8.887	14.693	6.511	0.4049825
PRD	0.9936	1.0104	1.0107	1.0174	0.0238	0.003122602
PRB	-0.0420971	-0.0081825	-0.0099498	0.0695872	0.1116843	0.01403782
PRB Significance	0.000000	0.215510	0.067511	0.996947	0.996947	0.2813443
PRB* (N=347)	-0.04210	-0.01451	-0.01822	0.06959	0.11169	0.01685983

PRB significance Bell Curve GWR Test

PRB Bell Curve GWR Test Significant

• One last telling example:

MRA Detached Total							
	Min	Mean	Median	Max	Range	Standard deviation	
Median Ratio	0.9976	1.0090	1.0090	1.0178	0.0202	0.003210438	
COD	14.46	14.82	14.81	15.28	0.82	0.1196332	
PRD	1.041	1.048	1.048	1.051	0.010	0.001326269	
PRB	-0.3138	-0.2855	-0.2864	-0.2167	0.0971	0.01207809	
PRB Significance	0.000e+0	2.342e-42	0.000e+00	1.755e-39	1.755e-39	6.409237e-41	
	0						
PRB* (N=X)							

COD Bell Curve MRADetachedTOTAAL

Z-score (COD>15) = 3,84509 P(X<15.28) ≈ 0,99994

Further research and Conclusions

INTERNATIONAL RESEARCH SYMPOSIUM

Amsterdam, The Netherlands • December 4 - 5, 2024

Further research

- Research into the influence of different Monte Carlo methods (markov chain, true random)
- Research into the behavior of regression-based model performance metrics under the application of Monte Carlo sampling
- Research into the legal implications of the application
- Research into the the relation between the Monte Carlo sampling method, bootstrapping and confidence intervals
- Application of the approach to emerging markets and data of lesser quality

Conclusions

- Law of large numbers and central limit theorem are indeed observed
- The application of Monte Carlo methods allows for the use of inferential statistics:
 - Ultimately it changes the question of whether an AVM is compliant into the question of how probable an AVM is to be complient to the IAAO Standard on Ratio Studies
- GBM is the preferred model with the least variability in the model performance indicators

This research has been done with the help of the IAAO Richard Almy research grant

I.hermans@waarderingskamer.nl

